Article ID Journal Published Year Pages File Type
5512902 The Journal of Nutritional Biochemistry 2017 12 Pages PDF
Abstract
Therefore, the aim of our study was to investigate the dissimilar effects of these two dietary components on selected proinflammatory and antioxidant pathways in the liver of C57BL/6 mice fed a standard (SD), a 45% saturated fat (HFAT) or a 60% fructose (HFRT) diet for 12 weeks. HFAT diet evoked systemic metabolic alterations and overweight, not observed in HFRT mice. However, HFRT mice had a greater hepatic triglyceride deposition with increased ratio of triacylglycerols containing the palmitic acid compared to HFAT, as assessed by liquid chromatography-mass spectrometry analysis. This effect is due to the higher activation of the SCAP/SREBP1c lipogenic pathway by HFRT feeding. In addition, we found inhibition of Keap1/Nrf2 antioxidant signaling and more robust stimulation of the Nlrp3 inflammasome pathway in the livers of HFRT-fed mice when compared with HFAT-fed mice, which is consistent with the recent finding that palmitate and SREBP1c are implicated in hepatic oxidative stress and inflammation. These effects were associated with increased hepatic inflammation, as confirmed by high expression of markers of leukocyte infiltration in the HFRT group. Thus, we hypothesize an amplifying loop among lipogenesis, palmitate, Nrf2 and Nlrp3 that leads to a higher risk of NAFLD progression to NASH in a high-fructose diet compared to a high-saturated fat intake.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , , , , , ,