Article ID Journal Published Year Pages File Type
5513133 The Journal of Steroid Biochemistry and Molecular Biology 2017 7 Pages PDF
Abstract

•T metabolites resistant to hydrolysis are evaluated for the screening of oral administration.•Four markers including these metabolites increased the detectability of the administration.•Prolonged detection of T administration even when urinary TG fails to detect the administration.•High intra-individual stability for all evaluated markers.

Testosterone (T) has traditionally been the most commonly reported doping agent by doping control laboratories. The screening of T misuse is performed by the quantification of six endogenous androgenic steroids and the ratio T/E included in the Athlete Biological Passport (ABP). The inclusion of additional metabolites can improve the screening capabilities of ABP. In this study, the potential of 3α-glucuronide-6β-hydroxyandrosterone (6OH-Andros3G) and 3α-glucuronide-6β-hydroxyetiocholanolone (6OH-Etio3G) as markers of T oral administration was evaluated. These glucuronides have been shown to be resistant to enzymatic hydrolysis and their quantification by means of liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was reported as the only way to obtain feasible results. Urine samples were collected from five volunteers before and after the oral administration of 40 mg of T undecanoate and were analyzed by a LC-MS/MS method recently developed. Concentration of 6OH-Andros3G and 6OH-Etio3G compounds and those of the glucuronides of T (TG), epitestosterone (EG), androsterone and etiocholanolone were established and different concentration ratios were calculated. The detection windows (DWs) for the T administration obtained by each selected ratio were compared to the one of TG/EG. The results showed that four out of the nine tested markers presented DWs much larger for all volunteers than those obtained by the World Anti-Doping Agency established T/E marker or other alternative markers. The 6OH-Andros3G/EG, 6OH-Etio3G/EG, 6OH-Andros3G/TG and 6OH-Etio3G/TG markers were able to identify the T abuse up to 96 h after the administration, extending our detection capability for the misuse up to 84 h more than the classic marker. The importance of these markers was also highlighted by their prolonged capacity to detect the T misuse in the case of one volunteer whose TG/EG barely exceeded his individual threshold. As a consequence, the four markers presented in this study seem to have an exceptional potential as biomarkers of T oral administration.

Graphical abstractDownload high-res image (54KB)Download full-size image

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , ,