Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5515186 | Pharmacology Biochemistry and Behavior | 2017 | 8 Pages |
â¢Increased A2A-D2 heterocomplexes in accumbens shell after cocaine self-administrationâ¢Increased D2-Sigma1R heterocomplexes in accumbens shell after cocaine self-administrationâ¢Reduced D2-Sigma1R heterocomplexes in caudate putamen after cocaine self-administrationâ¢Increased A2A-D2 heterocomplexes may contribute to reducing cocaine reward.
Adenosine 2A receptor (A2AR) agonists were indicated to reduce cocaine reward and cocaine seeking mainly through activation of antagonistic allosteric A2AR-dopamine D2R (D2R) interactions in A2AR-D2R heteroreceptor complexes. Furthermore, it was shown that modulation of cocaine reward involves antagonistic A2AR-D2R interactions in the ventral but not the dorsal striatum in rats. In the current work the proximity ligation assay (PLA) was used to further study the A2AR-D2R heteroreceptor complexes in the nucleus accumbens shell and core as well as the dorsal striatum under the influence of cocaine self-administration in rats. A significant increase in the A2AR-D2R PLA positive clusters was observed in the nucleus accumbens shell but not in the other regions vs yoked saline controls using the duolink software. Additionally, cocaine self-administration evoked a selective and significant increase in the density of D2R-sigma1R positive clusters in the nucleus accumbens shell vs yoked saline controls, while a significant reduction of the density of the D2R-sigma1R positive clusters was found in the dorsal part of the dorsal striatum. The results suggest that cocaine self-administration can reorganize A2AR and D2R into increased A2AR-D2R heteroreceptor complexes in the nucleus accumbens shell associated with increases in the D2R-sigma1R heteroreceptor complexes in this region. This reorganization can contribute to the demonstrated anti-cocaine actions of A2A receptor agonists and the putative formation of A2AR-D2R-sigma1R heterocomplexes.