Article ID Journal Published Year Pages File Type
5516138 Protein Expression and Purification 2017 9 Pages PDF
Abstract

•GPCR-VLP platform to efficiently screen for protein expression yield, stability and function.•Versatile system that can be adopted to many assay formats (label or label-free).•Shortens timelines for GPCR crystal structure determination and biophysical assay development.•Expands GPCR drug discovery tools with alternative ligand screening opportunities.

Recent innovative approaches to stabilize and crystallize GPCRs have resulted in an unprecedented breakthrough in GPCR crystal structures as well as application of the purified receptor protein in biophysical and biochemical ligand binding assays. However, the protein optimization process to enable these technologies is lengthy and requires iterative overexpression, solubilization, purification and functional analysis of tens to hundreds of protein variants. Here, we report a new and versatile method to screen in parallel hundreds of GPCR variants in HEK293 produced virus-like particles (VLPs) for protein yield, stability, functionality and ligand binding. This approach reduces the time and resources during GPCR construct optimization by eliminating lengthy protein solubilization and purification steps and by its adaptability to many binding assay formats (label or label-free detection). We exemplified the robustness of our VLP method by screening 210 GALR3-VLP variants in a radiometric agonist-based binding assay and a subset of 88 variants in a label-free antagonist-based assay. The resulting GALR3 agonist or antagonist stabilizing variants were then further used for recombinant protein expression in transfected insect cells. The final purified protein variants were successfully immobilized on a biosensor chip and used in a surface plasmon resonance binding assay.

Graphical abstractDownload high-res image (269KB)Download full-size image

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , , , , , , , , ,