Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
552363 | Decision Support Systems | 2010 | 10 Pages |
Offering online personalized recommendation services helps improve customer satisfaction. Conventionally, a recommendation system is considered as a success if clients purchase the recommended products. However, the act of purchasing itself does not guarantee satisfaction and a truly successful recommendation system should be one that maximizes the customer's after-use gratification. By employing an innovative associative classification method, we are able to predict a customer's ultimate pleasure. Based on customer's characteristics, a product will be recommended to the potential buyer if our model predicts his/her satisfaction level will be high. The feasibility of the proposed recommendation system is validated through laptop Inspiron 1525.