Article ID Journal Published Year Pages File Type
552535 Decision Support Systems 2014 16 Pages PDF
Abstract

•A situation awareness support system for managing abnormal situations is introduced.•Both hardware failure and human failure are considered in this study.•A situational network modeling process based on Bayesian networks is proposed.•A situation assessment model based on fuzzy logic and risk indicators is developed.•The proposed system provides adequate evidence of conformity with ALARP.

Operators handling abnormal situations in safety-critical environments need to be supported from a cognitive perspective to reduce their workload, stress, and consequent error rate. Of the various cognitive activities, a correct understanding of the situation, i.e. situation awareness (SA), is a crucial factor in improving performance and reducing error. However, existing system safety researches focus mainly on technical issues and often neglect SA. This study presents an innovative cognition-driven decision support system called the situation awareness support system (SASS) to manage abnormal situations in safety-critical environments in which the effect of situational complexity on human decision-makers is a concern. To achieve this objective, a situational network modeling process and a situation assessment model that exploits the specific capabilities of dynamic Bayesian networks and risk indicators are first proposed. The SASS is then developed and consists of four major elements: 1) a situation data collection component that provides the current state of the observable variables based on online conditions and monitoring systems, 2) a situation assessment component based on dynamic Bayesian networks (DBN) to model the hazardous situations in a situational network and a fuzzy risk estimation method to generate the assessment result, 3) a situation recovery component that provides a basis for decision-making to reduce the risk level of situations to an acceptable level, and 4) a human-computer interface. The SASS is partially evaluated by a sensitivity analysis, which is carried out to validate DBN-based situational networks, and SA measurements are suggested for a full evaluation of the proposed system. The performance of the SASS is demonstrated by a case taken from US Chemical Safety Board reports, and the results demonstrate that the SASS provides a useful graphical, mathematically consistent system for dealing with incomplete and uncertain information to help operators maintain the risk of dynamic situations at an acceptable level.

Related Topics
Physical Sciences and Engineering Computer Science Information Systems
Authors
, , ,