Article ID Journal Published Year Pages File Type
552717 Decision Support Systems 2007 12 Pages PDF
Abstract

In recent years border safety has been identified as a critical part of homeland security. The Department of Homeland Security searches vehicles entering the country for drugs and other contraband. Customs and Border Protection (CBP) agents believe that such vehicles operate in groups and if the criminal links of one vehicle are known then their border crossing patterns can be used to identify other partner vehicles. We perform this association analysis by using mutual information (MI) to identify pairs of vehicles that may be involved in criminal activity. CBP agents also suggest that criminal vehicles may cross at certain times or ports to try and evade inspection. We propose to modify the MI formulation to include these heuristics by using law enforcement data from border-area jurisdictions. Statistical tests and selected cases judged by domain experts show that modified MI performs significantly better than classical MI in identifying potentially criminal vehicles.

Related Topics
Physical Sciences and Engineering Computer Science Information Systems
Authors
, , ,