Article ID Journal Published Year Pages File Type
554980 ISPRS Journal of Photogrammetry and Remote Sensing 2014 15 Pages PDF
Abstract

Graph-based classification algorithms have gained increasing attention in semi-supervised classification. Nevertheless, the graph cannot fully represent the inherent spatial distribution of the data. In this paper, a new classification methodology based on the spatial-spectral Label Propagation is proposed for semi-supervised classification of hyperspectral imagery. The spatial information was used in two aspects: on the one hand, the spatial features extracted by a 2-D Gabor filter were stacked with spectral features; on the other hand, the width of the Gaussian function, which was used to construct graph, was determined with an adaptive method. Subsequently, the unlabeled samples from the spatial neighbors of the labeled samples were selected and the spatial graph was constructed based on spatial smoothness. Finally, labels were propagated from labeled samples to unlabeled samples with spatial-spectral graph to update the training set for a basic classifier (e.g., Support Vector Machine, SVM). Experiments on four hyperspectral datasets show that the proposed Spatial-Spectral Label Propagation based on the SVM (SS-LPSVM) can effectively represent the spatial information in the framework of semi-supervised learning and consistently produces greater classification accuracy than the standard SVM, the Laplacian Support Vector Machine (LapSVM), Transductive Support Vector Machine (TSVM) and the Spatial-Contextual Semi-Supervised Support Vector Machine (SCS3VM).

Related Topics
Physical Sciences and Engineering Computer Science Information Systems
Authors
, , , ,