Article ID Journal Published Year Pages File Type
5550215 International Journal of Pharmaceutics 2017 14 Pages PDF
Abstract

Targeting intestinal di- and tri-peptide transporter PepT1 with prodrugs is a successful strategy to improve oral drug bioavailability, as demonstrated with valacyclovir, a prodrug of acyclovir. The aim of this new drug delivery strategy is to over-concentrate a poorly absorbed drug on the intestinal membrane surface by targeting PepT1 with functionalized polymer nanoparticles. In the present study, poly(lactic acid)-poly(ethylene glycol)-ligand (PLA-PEG-ligand) nanoparticles were obtained by nanoprecipitation. A factorial experimental design allowed us to identify size-influent parameters and to obtain optimized ≈30 nm nanoparticles. Valine, Glycylsarcosine, Valine-Glycine, and Tyrosine-Valine were chemically linked to PLA-PEG. In Caco-2 cell monolayer model, competition between functionalized nanoparticles and [3H]Glycylsarcosine, a strong substrate of PepT1, reduced [3H]Glycylsarcosine transport from 22 to 46%. Acyclovir was encapsulated with a drug load of ≈10% in valine-functionalized nanoparticles, resulting in a 2.7-fold increase in permeability as compared to the free drug. An in vivo pharmacokinetic study in mice compared oral absorption of acyclovir after administration of 25 mg/kg of valacyclovir, free or encapsulated acyclovir in functionalized nanoparticles. Acyclovir encapsulation did not statistically modify AUC or Cmax, but increased t1/2 and MRT 1.3-fold as compared to free acyclovir. This new strategy is promising for poorly absorbed drugs by oral administration.

Graphical abstractDownload high-res image (86KB)Download full-size image

Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Pharmaceutical Science
Authors
, , , , , , , ,