Article ID Journal Published Year Pages File Type
5550733 International Journal of Pharmaceutics 2017 8 Pages PDF
Abstract

The immunostimulation capacity of most vaccines is enhanced through antigen adsorption on aluminum hydroxide (AH) adjuvants. Varying the adsorption conditions, i.e. pH and ionic strength (I), changes the antigen adsorbed amount and therefore the ability of the vaccine to stimulate the immune system. Vaccine formulations are thus resulting from an empirical screening of the adsorption conditions. This work aims at studying the physicochemical effects of adjusting the ionic strength of commercial AH adjuvant particles suspensions with sodium chloride (NaCl). X-ray photoelectron spectroscopy data show that AH particles surface chemical composition is neither altered by I adjustment with NaCl nor by deposition on gold surfaces. The latter result provides the opportunity to use AH-coated gold surfaces as a platform for advanced surface analysis of adjuvant particles, e.g. by atomic force microscopy (AFM). The morphology of adjuvant particles recovered from native and NaCl-treated AH suspensions, as studied by scanning electron microscopy and AFM, reveals that AH particles aggregation state is significantly altered by NaCl addition. This is further confirmed by nitrogen adsorption experiments: I adjustment to 150 mM with NaCl strongly promotes AH particles aggregation leading to a strong decrease of the developed specific surface area. This work thus evidences the effect of NaCl on AH adjuvant structure, which may lead to alteration of formulated vaccines and to misinterpretation of data related to antigen adsorption on adjuvant particles.

Graphical abstractDownload high-res image (231KB)Download full-size image

Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Pharmaceutical Science
Authors
, , ,