Article ID Journal Published Year Pages File Type
5557450 Pharmacological Research 2017 12 Pages PDF
Abstract

Neuroinflammation plays an important role in the progression of various neurodegenerative diseases. In this study, we investigated the anti-inflammatory effects of lonchocarpine, a natural compound isolated from Abrus precatorius, under in vitro and in vivo neuroinflammatory conditions induced by challenge with lipopolysaccharide (LPS)- or polyinosinic-polycytidylic acid (poly(I:C)). Lonchocarpine suppressed the expression of iNOS and proinflammatory cytokines in LPS or poly(I:C)-stimulated BV2 microglial cells. These anti-inflammatory effects were verified in brains of mice with systemic inflammation induced by administration of LPS or poly(I:C). Lonchocarpine reduced the number of Iba-1-positive activated microglia, and suppressed the mRNA expression of various proinflammatory markers in the cortex of LPS- or poly(I:C)-injected mice. Molecular mechanistic experiments showed that lonchocarpine inhibited NF-κB activity by reducing the phosphorylation and degradation of IκBα in LPS- or poly(I:C)-stimulated BV2 cells. Analysis of further upstream signaling pathways in LPS-stimulated microglia showed that lonchocarpine inhibited the phosphorylation of IκB kinase and TGFβ-activated kinase 1 (TAK1). Moreover, lonchocarpine suppressed the interaction of myeloid differentiation factor 88 (MyD88) and intereleukin-1 receptor-associated kinase 4 (IRAK4). These data suggest that toll-like receptor 4 downstream signals such as MyD88/IRAK4-TAK1-NF-κB are at least partly involved in the anti-inflammatory mechanism of lonchocarpine in LPS-stimulated microglia. Its strong anti-inflammatory effects may make lonchocarpine an effective preventative drug for neuroinflammatory disorders that are associated with systemic inflammation.

Graphical abstractDownload high-res image (112KB)Download full-size image

Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Pharmacology
Authors
, , , , ,