Article ID Journal Published Year Pages File Type
556079 ISPRS Journal of Photogrammetry and Remote Sensing 2013 13 Pages PDF
Abstract

This article presents a novel, fully automatic method for the reconstruction of three-dimensional building models with prototypical roofs (CityGML LoD2) from LIDAR data and building footprints. The proposed method derives accurate results from sparse point data sets and is suitable for large area reconstruction. Sparse LIDAR data are widely available nowadays. Robust estimation methods such as RANSAC/MSAC, are applied to derive best fitting roof models in a model-driven way. For the identification of the most probable roof model, supervised machine learning methods (Support Vector Machines) are used. In contrast to standard approaches (where the best model is selected via MDL or AIC), supervised classification is able to incorporate additional features enabling a significant improvement in model selection accuracy.

Related Topics
Physical Sciences and Engineering Computer Science Information Systems
Authors
, , , ,