Article ID Journal Published Year Pages File Type
557696 Biomedical Signal Processing and Control 2008 6 Pages PDF
Abstract

The study proposes a method for supervised classification of multi-channel surface electromyographic signals with the aim of controlling myoelectric prostheses. The representation space is based on the discrete wavelet transform (DWT) of each recorded EMG signal using unconstrained parameterization of the mother wavelet. The classification is performed with a support vector machine (SVM) approach in a multi-channel representation space. The mother wavelet is optimized with the criterion of minimum classification error, as estimated from the learning signal set. The method was applied to the classification of six hand movements with recording of the surface EMG from eight locations over the forearm. Misclassification rate in six subjects using the eight channels was (mean ± S.D.) 4.7 ± 3.7% with the proposed approach while it was 11.1 ± 10.0% without wavelet optimization (Daubechies wavelet). The DWT and SVM can be implemented with fast algorithms, thus, the method is suitable for real-time implementation.

Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, , , , ,