Article ID Journal Published Year Pages File Type
558035 Biomedical Signal Processing and Control 2012 22 Pages PDF
Abstract

The major concentration of this study is to describe the structure of a C++/MEX solution for robust detection and delineation of arterial blood pressure (ABP) signal events. Toward this objective, the original ABP signal was pre-processed by application of à trous discrete wavelet transform (DWT) to extract several dyadic scales. Then, a sliding window with fixed length was moved on the appropriately selected scale. In each slid, mean, variance, Skewness and Kurtosis values of the excerpted segment were superimposed to generate a newly defined multiple higher order moments (MHOM) metric to be used as the detection decision statistic (DS). Then, after application of an adaptive-nonlinear transformation for making the DS baseline static, the histogram parameters of the enhanced DS were used for regulation of the α-level Neyman–Pearson classifier aimed for false alarm probability (FAP)-bounded delineation of the ABP events. The proposed method was applied to all 18 subjects of the MIT-BIH Polysomnographic Database (359,000 beats). The end-systolic and end-diastolic locations of the ABP signal as well as the dicrotic notch pressure were extracted and values of sensitivity Se = 99.86% and positive predictivity P+ = 99.95% were obtained for the detection of all ABP events. This paper proves the proposed MHOM-based ABP events detection–delineation algorithm as an improvement because of its merits such as: high robustness against measurement noises, acceptable detection–delineation accuracy of the ABP events in the presence of severe heart valvular, arrhythmic dysfunctions within a tolerable computational burden (processing time) and having no parameters dependency on the acquisition sampling frequency.

► The proposed method was applied to 359,000 beats of the PhysioNet Database. ► All characteristic locations of the ABP signal and dicrotic notch pressure were detected. ► Values of sensitivity Se = 99.86% and positive predictivity P+ = 99.95% were achieved. ► The proposed ABP events detection algorithm is robust against measurement noises. ► Also, accuracy of method is acceptable within a tolerable processing time with no dependency to acquisition system sampling frequency.

Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, , , , ,