Article ID Journal Published Year Pages File Type
558136 Biomedical Signal Processing and Control 2007 8 Pages PDF
Abstract

A simplified model of arterial blood pressure intended for use in model-based signal processing applications is presented. The main idea is to decompose the pressure into two components: a travelling wave which describes the fast propagation phenomena predominating during the systolic phase and a windkessel flow that represents the slow phenomena during the diastolic phase. Instead of decomposing the blood pressure pulse into a linear superposition of forward and backward harmonic waves, as in the linear wave theory, a nonlinear superposition of travelling waves matched to a reduced physical model of the pressure, is proposed. Very satisfactory experimental results are obtained by using forward waves, the NN-soliton solutions of a Korteweg–de Vries equation in conjunction with a two-element windkessel model. The parameter identifiability in the practically important 3-soliton case is also studied. The proposed approach is briefly compared with the linear one and its possible clinical relevance is discussed.

Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, , ,