Article ID Journal Published Year Pages File Type
558841 Digital Signal Processing 2013 12 Pages PDF
Abstract

This work is concerned with a new technique to find identification factors for the different sleep stages based on a soft-decision wavelet-based estimation of power-spectral density (PSD) contained in the main frequency bands of Heart Rate Variability (HRV).A wavelet-based PSD distribution of HRV in different sleep stages is implemented on an epoch basis. Four sleep stages (S1–S4), “REM sleep” (with “rapid eye movements”), and wakefulness are considered in this work. The data used, including electro-cardiograms and sleep stage monitoring hypnograms, are provided by the sleep laboratory of the department of Psychiatry and Psychotherapy of Christian-Albrechts University Kiel, Germany. The data, taken from 12 healthy people and containing enough epochs of the above 5 different sleep stages plus the wake state, is divided into almost equal sets for training and test.The results show that the PSD of the very-low-frequency (VLF) band and the low-frequency (LF) band are reduced as sleep stages vary from the wake state to REM sleep and further to light sleep (S1–S2) and deep sleep (S3–S4). The variation of the PSD in the high-frequency (HF) band is almost the opposite. The ratio of the VLF/HF PSD is found to be a good identification factor between the different sleep stages, showing better results than other, commonly used factors such as the LF/HF and VLF/LF PSD ratios.

Related Topics
Physical Sciences and Engineering Computer Science Signal Processing