Article ID Journal Published Year Pages File Type
559401 Mechanical Systems and Signal Processing 2013 25 Pages PDF
Abstract

•A new optimal wavelet filter based on genetic algorithm is designed.•Optimal parameters of complex Morlet wavelet can be automatically determined.•Convergence of optimal Morlet filter has been enhanced by a new sparsogram.•Sparsity measurement value is maximized by genetic algorithm.•A non-linear function is introduced to depress noise that is embedded in the inspected signals.

Rolling element bearings are the most important components used in machinery. Bearing faults, once they have developed, quickly become severe and can result in fatal breakdowns. Envelope spectrum analysis is one effective approach to detect early bearing faults through the identification of bearing fault characteristic frequencies (BFCFs). To achieve this, it is necessary to find a band-pass filter to retain a resonant frequency band for the enhancement of weak bearing fault signatures. In Part 1 paper, the wavelet packet filters with fixed center frequencies and bandwidths used in a sparsogram may not cover a whole bearing resonant frequency band. Besides, a bearing resonant frequency band may be split into two adjacent imperfect orthogonal frequency bands, which reduce the bearing fault features. Considering the above two reasons, a sparsity measurement based optimal wavelet filter is required to be designed for providing more flexible center frequency and bandwidth for covering a bearing resonant frequency band. Part 2 paper presents an automatic selection process for finding the optimal complex Morlet wavelet filter with the help of genetic algorithm that maximizes the sparsity measurement value. Then, the modulus of the wavelet coefficients obtained by the optimal wavelet filter is used to extract the envelope. Finally, a non-linear function is introduced to enhance the visual inspection ability of BFCFs. The convergence of the optimal filter is fastened by the center frequencies and bandwidths of the optimal wavelet packet nodes established by the new sparsogram. Previous case studies including a simulated bearing fault signal and real bearing fault signals were used to show that the effectiveness of the optimal wavelet filtering method in detecting bearing faults. Finally, the results obtained from comparison studies are presented to verify that the proposed method is superior to the other three popular methods.

Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, ,