Article ID Journal Published Year Pages File Type
559424 Mechanical Systems and Signal Processing 2013 21 Pages PDF
Abstract

In this article a theoretical linear modal analysis of Euler–Bernoulli L-shaped beam structures is performed by solving two sets of coupled partial differential equations of motion. The first set, with two equations, corresponds to in-plane bending motions whilst the second set with four equations corresponds to out-of-plane motions with bending and torsion. The case is also shown of a single cantilever beam taking into account rotary inertia terms. At first for the case of examination of the results for the L-shaped beam structure, an individual modal analysis is presented for four selected beams which will be used for modelling an L-shaped beam structure; in order to investigate the influence of rotary inertia terms and shear effects. Then, a theoretical and numerical modal analysis is performed for four models of the L-shaped beam structure consisting of two sets of beams, in order to examine the effect of the orientation of the secondary beam (oriented in two ways) and also shear effects. The comparison of theoretical and finite element simulations shows a good agreement for both in-plane and out-of-plane motions, which validates the theoretical analysis. This work is essential to make progress with new investigations into the nonlinear equations for the L-shaped beam structures within Nonlinear Normal Mode theory.

► Analytical modal analysis of L-shaped beam structure in in-plane bending. ► Analytical modal analysis of L-shaped beam structure in out-of-plane motions. ► Validation and discussion of the theoretical results with finite element simulations.

Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, , ,