Article ID Journal Published Year Pages File Type
560060 Digital Signal Processing 2016 8 Pages PDF
Abstract

This paper addresses the problem of joint detection, tracking and classification (JDTC) of multiple maneuvering targets in clutter. The multiple model cardinality balanced multi-target multi-Bernoulli (MM-CBMeMBer) filter is a promising algorithm for tracking an unknown and time-varying number of multiple maneuvering targets by utilizing a fixed set of models to match the possible motions of targets, while it exploits only the kinematic information. In this paper, the MM-CBMeMBer filter is extended to incorporate the class information and the class-dependent kinematic model sets. By following the rules of Bayesian theory and Random Finite Set (RFS), the extended multi-Bernoulli distribution is propagated recursively through prediction and update. The Sequential Monte Carlo (SMC) method is adopted to implement the proposed filter. At last, the performance of the proposed filter is examined via simulations.

Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, , ,