Article ID Journal Published Year Pages File Type
560956 Mechanical Systems and Signal Processing 2006 18 Pages PDF
Abstract

This paper proposes a novelty detection-based method for machine condition monitoring (MCM) using vibration signals and a new feature extraction method based on higher-order statistics of the power spectral density. This novel MCM method is based on Kohonen's self-organising map and adopts a multidimensional dissimilarity measure for dual class classification. The approach is designed to be highly modular and scale well for a multi-sensor condition monitoring environment. Experiments using real-world vibration data sets with upto eight sensors have shown high accuracy in classification and robustness across different condition monitoring applications.

Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, , ,