Article ID Journal Published Year Pages File Type
561960 Mechanical Systems and Signal Processing 2009 16 Pages PDF
Abstract

The main objective of this paper is to diagnose the presence of combined faults in induction machines. For this purpose, a methodology based on the application of the Discrete Wavelet Transform (DWT) to the stator startup current is used. This approach was applied in previous works with success to the diagnosis of rotor asymmetries and mixed eccentricities in motors with different sizes and conditions. However, as most of the diagnosis methods hitherto developed, the application of the proposed approach was circumscribed to situations in which a single fault was present in the machine. In addition, the influence of other phenomena such as load torque oscillations or voltage fluctuations was studied, but without considering the combination of these phenomena and the fault in the machine. This work is intended, first, to apply the proposed transient-based methodology to several cases in which different faults (rotor asymmetries, mixed eccentricities and inter-turn and inter-coil stator short-circuits) are simultaneously present in the machine and, second, to apply it to cases regarding faults combined with other phenomena making difficult the diagnosis, such as load torque oscillations. Interesting considerations regarding the preponderance of the effects of some of the faults are also done in the paper. The application of the methodology is focused on induction machines with stator parallel branches; in this sense, the suitability of the use either of the phase current or of the branch current for the diagnosis of each particular fault is analysed. The results look promising with regard to the validity of the methodology for the reliable discrimination of simultaneous electromechanical faults and the diagnosis of faults combined with other phenomena.

Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, , , , ,