Article ID Journal Published Year Pages File Type
562180 Signal Processing 2016 17 Pages PDF
Abstract

•Heterogeneous sensing systems provide multiple views of the sensed field.•A regularized canonical correlation analysis method is proposed in sensor clustering.•Norm-one and norm-two regularized clustering.•Block coordinate descent is combined with ADMM to derive centralized algorithm.•Distributed clustering of heterogeneous observations.

Heterogeneous sensing systems, consisting of sensors with different sensing capabilities, offer flexibility and provide multiple views of the sensed field by acquiring different types of measurements. The acquired sensor measurements are affected by different and unknown in number phenomena/sources of interest. To this end, a novel canonical correlation analysis (CCA) framework equipped with norm-one and norm-two regularization terms is designed to cluster the sensor data based on their information content. Block coordinate descent (BCD) is combined with the alternating direction method of multipliers (ADMM) framework to derive a centralized algorithm tackling the novel regularized CCA framework. Further, splitting of the regularized CCA into localized minimization subtasks across sensors enables distributed clustering of heterogeneous data based on their information content. Numerical tests demonstrate that the novel framework can achieve higher probability of correct clustering than existing alternatives.

Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, ,