Article ID Journal Published Year Pages File Type
562568 Biomedical Signal Processing and Control 2014 8 Pages PDF
Abstract

•A method using combined HHT and SVM is proposed for seizure detection.•The time-frequency image based on HHT is employed for signal analysis.•The statistical features of histogram are extracted for SVM classification.•The best average classification accuracy over ten trails is 99.125%.

The detection of seizure activity in electroencephalogram (EEG) signals is crucial for the classification of epileptic seizures. However, epileptic seizures occur irregularly and unpredictably, automatic seizure detection in EEG recordings is highly required. In this work, we present a new technique for seizure classification of EEG signals using Hilbert–Huang transform (HHT) and support vector machine (SVM). In our method, the HHT based time-frequency representation (TFR) has been considered as time-frequency image (TFI), the segmentation of TFI has been implemented based on the frequency-bands of the rhythms of EEG signals, the histogram of grayscale sub-images has been represented. Statistical features such as mean, variance, skewness and kurtosis of pixel intensity in the histogram have been extracted. The SVM with radial basis function (RBF) kernel has been employed for classification of seizure and nonseizure EEG signals. The classification accuracy and receiver operating characteristics (ROC) curve have been used for evaluating the performance of the classifier. Experimental results show that the best average classification accuracy of this algorithm can reach 99.125% with the theta rhythm of EEG signals.

Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, , , ,