Article ID Journal Published Year Pages File Type
562707 Signal Processing 2012 11 Pages PDF
Abstract

We consider the problem of joint blind source separation of multiple datasets and introduce a solution to the problem for complex-valued sources. We pose the problem in an independent vector analysis (IVA) framework and provide a new general IVA implementation using Wirtinger calculus and a decoupled nonunitary optimization algorithm to facilitate Newton-based optimization. Utilizing the noncircular multivariate Gaussian distribution as a source prior enables the full utilization of the complete second-order statistics available in the covariance and pseudo-covariance matrices. The algorithm provides a principled approach for achieving multiset canonical correlation analysis.

Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, , ,