Article ID Journal Published Year Pages File Type
562786 Signal Processing 2012 7 Pages PDF
Abstract

A new blind equalization method for constant modulus (CM) signals based on Gaussian process for regression (GPR) by incorporating a constant modulus algorithm (CMA)-like error function into the conventional GPR framework is proposed. The GPR framework formulates the posterior density function for weights using Bayes' rule under the assumption of Gaussian prior for weights. The proposed blind GPR equalizer is based on linear-in-weights regression model, which has a form of nonlinear minimum mean-square error solution. Simulation results in linear and nonlinear channels are presented in comparison with the state-of-the-art support vector machine (SVM) and relevance vector machine (RVM) based blind equalizers. The simulation results show that the proposed blind GPR equalizer without cumbersome cross-validation procedures shows the similar performances to the blind SVM and RVM equalizers in terms of intersymbol interference and bit error rate.

Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, ,