Article ID Journal Published Year Pages File Type
562789 Signal Processing 2012 9 Pages PDF
Abstract

The probability hypothesis density (PHD) filter is a promising algorithm for multitarget tracking, which can be extended for jump Markov systems (JMS). Since the existing multiple model sequential Monte Carlo PHD (MM SMC-PHD) filter is not interacting, two extensions of the SMC-PHD filters are developed in this paper. The interacting multiple-model (IMM) SMC-PHD filter approximates the model conditional PHD of target states by particles, and performs the interaction by resampling without any a priori assumption of the noise. The IMM Rao-Blackwellized particle (RBP) PHD filter uses the idea of Rao-Blackwellized to further enhance the performance of target state estimation for JMS with mixed linear/nonlinear state space models. The simulation results show that the proposed algorithms have better performances than the existing MM SMC-PHD filter in terms of state filtering and target number estimation.

► The first study to extend the SMC-PHD filter to the interacting multiple model. ► The first study to embed the idea of Rao-Blackwellized to the SMC-PHD filter. ► The supplement to the BFG based GM-PHD filter for jump Markov systems.

Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, , ,