Article ID Journal Published Year Pages File Type
562820 Biomedical Signal Processing and Control 2006 10 Pages PDF
Abstract

In this paper, a new Wavelet threshold based ECG signal compression technique using uniform scalar zero zone quantizer (USZZQ) and Huffman coding on differencing significance map (DSM) is proposed. Wavelet coefficients are selected based on the energy packing efficiency of each sub-band. Significant Wavelet coefficients are quantized with uniform scalar zero zone quantizer. Significance map is created to store the indices of the significant coefficients. This map is encoded efficiently with less number of bits by applying Huffman coding on the differences between indices in the significance map. ECG records from the MIT-BIH arrhythmia database are selected as test data. For the record 117, the proposed technique achieves a compression ratio of 18.7:1 with lower percentage root mean square difference (PRD) compared to other threshold based methods. The proposed technique is tested for MIT-BIH arrhythmia record 119 and a compression ratio of 21.81:1 is achieved with a PRD value of 3.716% which is much lower compared to the reported PRD value of 5.0 and 5.5% of set partitioning in hierarchical tress (SPIHT) and analysis by synthesis ECG compressor (ASEC), respectively. The noise eliminating capability of the proposed technique is also demonstrated in this work. The proposed technique achieves the required compression ratio with less reconstruction error for GSM-based cellular telemedicine system.

Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, ,