Article ID Journal Published Year Pages File Type
565023 Signal Processing 2006 13 Pages PDF
Abstract

This paper deals with numerical solutions to a partial differential equation of fractional order. Generally this type of equation describes a transition from anomalous diffusion to transport processes. From a phenomenological point of view, the equation includes at least two fractional derivatives: spatial and temporal. In this paper we proposed a new numerical scheme for the spatial derivative, the so-called Riesz–Feller operator. Moreover, using the finite difference method, we show how to employ this scheme in the numerical solution of fractional partial differential equations. In other words, we considered an initial-boundary value problem in one-dimensional space. In the final part of this paper some numerical results and plots of simulations are shown as examples.

Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, ,