Article ID Journal Published Year Pages File Type
565065 Digital Signal Processing 2010 9 Pages PDF
Abstract

This paper uses an estimated noise transfer function to filter the input–output data and presents filtering based recursive least squares algorithms (F-RLS) for controlled autoregressive autoregressive moving average (CARARMA) systems. Through the data filtering, we obtain two identification models, one including the parameters of the system model, and the other including the parameters of the noise model. Thus, the recursive least squares method can be used to estimate the parameters of these two identification models, respectively, by replacing the unmeasurable variables in the information vectors with their estimates. The proposed F-RLS algorithm has a high computational efficiency because the dimensions of its covariance matrices become small and can generate more accurate parameter estimation compared with other existing algorithms.

Related Topics
Physical Sciences and Engineering Computer Science Signal Processing