Article ID Journal Published Year Pages File Type
565219 Signal Processing 2006 12 Pages PDF
Abstract

A solution to the problem of speech recognition with signals corrupted by coders is presented. The coding-decoding distortion is modelled as feature dependent. This model is employed to propose an unsupervised expectation-maximization (EM) estimation algorithm of the coding–decoding distortion that is able to cancel the effect of coders with as few as one adapting utterance. No knowledge about the coder is required. The feature-dependent adaptation can give a word error rate (WER) 21% lower than the feature-independent model. Finally, when compared to the baseline system, the reduction in WER can be as high as 70%.

Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, ,