Article ID Journal Published Year Pages File Type
566335 Signal Processing 2015 13 Pages PDF
Abstract

The problem considered is the estimation of a finite number of cisoids embedded in white noise, using a sparse signal representation (SSR) approach, a problem which is relevant in many radar applications. Many SSR algorithms have been developed in order to solve this problem, but they usually are sensitive to grid mismatch. In this paper, two Bayesian algorithms are presented, which are robust towards grid mismatch: a first method uses a Fourier dictionary directly parametrized by the grid mismatch while the second one employs a first-order Taylor approximation to relate linearly the grid mismatch and the sparse vector. The main strength of these algorithms lies in the use of a mixed-type distribution which decorrelates sparsity level and target power. Besides, both methods are implemented through a Monte-Carlo Markov chain algorithm. They are successfully evaluated on synthetic and experimental radar data, and compared to a benchmark algorithm.

Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, , , ,