Article ID Journal Published Year Pages File Type
566346 Speech Communication 2008 13 Pages PDF
Abstract

In this paper, we describe a statistical approach to both an articulatory-to-acoustic mapping and an acoustic-to-articulatory inversion mapping without using phonetic information. The joint probability density of an articulatory parameter and an acoustic parameter is modeled using a Gaussian mixture model (GMM) based on a parallel acoustic–articulatory speech database. We apply the GMM-based mapping using the minimum mean-square error (MMSE) criterion, which has been proposed for voice conversion, to the two mappings. Moreover, to improve the mapping performance, we apply maximum likelihood estimation (MLE) to the GMM-based mapping method. The determination of a target parameter trajectory having appropriate static and dynamic properties is obtained by imposing an explicit relationship between static and dynamic features in the MLE-based mapping. Experimental results demonstrate that the MLE-based mapping with dynamic features can significantly improve the mapping performance compared with the MMSE-based mapping in both the articulatory-to-acoustic mapping and the inversion mapping.

Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, , ,