Article ID Journal Published Year Pages File Type
566627 Signal Processing 2011 15 Pages PDF
Abstract

In this paper, the reliable H∞H∞ filtering problem is investigated for a class of uncertain discrete time-delay systems with randomly occurred nonlinearities (RONs) and sensor failures. RONs are introduced to model a class of sector-like nonlinearities that occur in a probabilistic way according to a Bernoulli distributed white sequence with a known conditional probability. The failures of sensors are quantified by a variable varying in a given interval. The time-varying delay is unknown with given lower and upper bounds. The aim of the addressed reliable H∞H∞ filtering problem is to design a filter such that, for all possible sensor failures, RONs, time-delays as well as admissible parameter uncertainties, the filtering error dynamics is asymptotically mean-square stable and also achieves a prescribed H∞H∞ performance level. Sufficient conditions for the existence of such a filter are obtained by using a new Lyapunov–Krasovskii functional and delay-partitioning technique. The filter gains are characterized in terms of the solution to a set of linear matrix inequalities (LMIs). A numerical example is given to demonstrate the effectiveness of the proposed design approach.

Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, , ,