Article ID Journal Published Year Pages File Type
567212 Signal Processing 2007 14 Pages PDF
Abstract

In this article, we consider high-dimensional data which contains a low-dimensional non-Gaussian structure contaminated with Gaussian noise. Motivated by the joint diagonalization algorithms, we propose a linear dimension reduction procedure called joint low-dimensional approximation (JLA) to identify the non-Gaussian subspace. The method uses matrices whose non-zero eigen spaces coincide with the non-Gaussian subspace. We also prove its global consistency, that is the true mapping to the non-Gaussian subspace is achieved by maximizing the contrast function defined by such matrices. As examples, we will present two implementations of JLA, one with the fourth-order cumulant tensors and the other with Hessian of the characteristic functions. A numerical study demonstrates validity of our method. In particular, the second algorithm works more robustly and efficiently in most cases.

Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, ,