Article ID Journal Published Year Pages File Type
567226 Advances in Engineering Software 2015 11 Pages PDF
Abstract

This paper deals with a numerical and experimental investigation on the influence of residual stresses on fatigue crack growth in AA2024-T3 friction stir welded butt joints. The computational approach is based on the sequential usage of the Finite Element Method (FEM) and the Dual Boundary Element Method (DBEM). Linear elastic FE simulations are performed to evaluate the process induced residual stresses, by means of the contour method. The computed stress field is transferred to a DBEM environment and superimposed to the stress field produced by a remote fatigue traction load applied on a friction stir welded cracked specimen; the crack propagation is then simulated according to a two-parameter growth model. Numerical results have been compared with experimental data showing good agreement and evidencing the predictive capability of the proposed method. The obtained results highlight the influence of the residual stress distribution on crack growth.

Related Topics
Physical Sciences and Engineering Computer Science Software
Authors
, , , ,