Article ID Journal Published Year Pages File Type
567230 Advances in Engineering Software 2015 11 Pages PDF
Abstract

In this manuscript a concurrent coupling scheme is presented to model three dimensional cracks and dislocations at the atomistic level. The scheme couples molecular dynamics to extended finite element method (XFEM) via the Bridging Domain Method (BDM). This method is based on linear weighting of the strain energy over a region (the bridging domain) which conserves the energy in the entire system. To compute the material behavior in the continuum scale, the Cauchy–Born method is used. Many improvements have been made in the implementation to make the method work for the general case of materials and presence of multi-million degrees of freedom. To show the applicability and productivity of the proposed method, two three dimensional crack examples were modeled. The results show that the method and the corresponding implementation are capable of handling dislocation and crack propagation in the three dimensional space.

Related Topics
Physical Sciences and Engineering Computer Science Software
Authors
, , ,