Article ID Journal Published Year Pages File Type
568097 Advances in Engineering Software 2010 6 Pages PDF
Abstract

A novel finite element topology optimization procedure is presented based on the application of probability density and cumulative distribution functions. The procedure utilizes a family of Beta functions with constant probability mean which provide a smooth transition from a uniform to a bi-modal density distribution while conserving constant mean density and therefore constant mass. Validation of the method is demonstrated for several well-known two-dimensional minimum-weight structures. A general minimum-weight cylindrical structural layout for the support of any combination of axial and torsional loading has been developed to provide a test case for three dimensional numerical topological optimization. It is observed that this solution presents a challenge, especially for cases where the axial load is significantly larger than the torsional loading. For these cases, slender members are an essential part of the optimal topology.

Related Topics
Physical Sciences and Engineering Computer Science Software
Authors
, ,