Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
568382 | Advances in Engineering Software | 2010 | 6 Pages |
This paper describes self-organizing maps for genetic algorithm (SOM-GA) which is the combinational algorithm of a real-coded genetic algorithm (RCGA) and self-organizing map (SOM). The self-organizing maps are trained with the information of the individuals in the population. Sub-populations are defined by the help of the trained map. The RCGA is performed in the sub-populations. The use of the sub-population search algorithm improves the local search performance of the RCGA. The search performance is compared with the real-coded genetic algorithm (RCGA) in three test functions. The results show that SOM-GA can find better solutions in shorter CPU time than RCGA. Although the computational cost for training SOM is expensive, the results show that the convergence speed of SOM-GA is accelerated according to the development of SOM training.