Article ID Journal Published Year Pages File Type
568830 Environmental Modelling & Software 2007 15 Pages PDF
Abstract

A common limitation of the Activated Sludge Models (ASM) [Henze, M., Gujer, W., Mino, T., van Loosdrecht, M.C.M., 2000. Activated Sludge Models ASM1, ASM2, ASM2d, and ASM3. IWA Scientific and Technical Report No. 9. IWA Publishing, London, UK] is the representation of the nitrification dynamics as a single-step process and the consequent denitrification on nitrate alone. This generally acknowledged simplification may represent a serious limitation in specific applications where nitrites become important, either as a target final product or an unwanted intermediate. This paper proposes an enhancement to the basic ASM3 model, introducing a two-step model for the process nitrification and, consequently, considering denitrification on both nitrite and nitrate. After introducing the relevant process kinetics and adapting the stoichiometric matrix accordingly, the model implementation in the Matlab/Simulink™ platform is described with reference to the benchmark setting. To obtain a fast implementation, the process units (reaction tanks and secondary settler) have been implemented as DLLs linked to the Simulink blocks, whereas the model parameters and stoichiometric matrix remain accessible to the user. The new model is compared with the standard ASM3 and checked for consistency and mass conservation. It is also shown that with the default kinetic parameters nitrite may represent a considerable fraction of the nitrified effluent, thus revealing a design limitation in the benchmark sizing. In the last part, an optimization of the benchmark plant volumes has been attempted in order to minimize such violations, resulting in a moderate increase of the overall reaction volume. The pertinent software is freely available for research purposes.

Related Topics
Physical Sciences and Engineering Computer Science Software
Authors
, , , ,