Article ID Journal Published Year Pages File Type
568929 Speech Communication 2007 11 Pages PDF
Abstract

The need to compile annotated speech databases remains an impediment to the development of automatic speech recognition (ASR) systems in under-resourced multilingual environments. We investigate whether it is possible to combine speech data from different languages spoken within the same multilingual population to improve the overall performance of a speech recognition system. For our investigation, we use recently collected Afrikaans, South African English, Xhosa and Zulu speech databases. Each consists of between 6 and 7 h of speech that has been annotated at the phonetic and the orthographic level using a common IPA-based phone set. We compare the performance of separate language-specific systems with that of multilingual systems based on straightforward pooling of training data as well as on a data-driven alternative. For the latter, we extend the decision-tree clustering process normally used to construct tied-state hidden Markov models to allow the inclusion of language-specific questions, and compare the performance of systems that allow sharing between languages with those that do not. We find that multilingual acoustic models obtained in this way show a small but consistent improvement over separate-language systems as well as systems based on IPA-based data pooling.

Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
,