Article ID Journal Published Year Pages File Type
569219 Environmental Modelling & Software 2006 14 Pages PDF
Abstract

Monitoring of surface ozone over southern Africa has shown that ambient concentrations often exceed a threshold of 40 ppb at which damage to vegetation by ozone could be expected. The Cross Border Air Pollution Assessment Project (CAPIA) was therefore established to assess the potential impacts of ozone on maize, a staple food crop, in five southern African countries. Measured surface ozone data are scare in the region so it was necessary to complement the monitoring with regional-scale photochemical modelling to achieve the objective. The Pennsylvania State and NCAR Mesoscale Model (MM5) is used to produce gridded meteorological data for 5 days in each month of the maize growing season, October to April, as input to the photochemical model, CAMx. Gridded anthropogenic emissions from industry, transport and domestic burning and gridded biogenic emissions from soils and vegetation are input to CAMx. The model estimations indicate large areas on the sub-continent where surface ozone concentrations exceed 40 ppb for up to 10 h per day. Maximum concentrations may exceed 80 ppb, particularly in the winter when mean ozone concentrations are higher. The areas where the 40 ppb threshold is exceeded coincide with maize growing areas in South Africa and Zimbabwe. It appears that neither anthropogenic emissions nor biogenic emissions are dominant in the production of surface ozone over southern Africa. Rather the formation of surface ozone over the region is attributed to the combined contribution of precursors from anthropogenic and biogenic origin.

Related Topics
Physical Sciences and Engineering Computer Science Software
Authors
, , , , , , ,