Article ID Journal Published Year Pages File Type
569419 Environmental Modelling & Software 2007 7 Pages PDF
Abstract

The prediction of tropospheric ozone concentrations is very important due to the negative impacts of ozone on human health, climate and vegetation. The development of models to predict ozone concentrations is thus very useful because it can provide early warnings to the population and also reduce the number of measuring sites. The aim of this study was to predict next day hourly ozone concentrations through a new methodology based on feedforward artificial neural networks using principal components as inputs. The developed model was compared with multiple linear regression, feedforward artificial neural networks based on the original data and also with principal component regression. Results showed that the use of principal components as inputs improved both models prediction by reducing their complexity and eliminating data collinearity.

Related Topics
Physical Sciences and Engineering Computer Science Software
Authors
, , , ,