Article ID Journal Published Year Pages File Type
5704107 Experimental Eye Research 2017 8 Pages PDF
Abstract
The purpose of this article is to summarize our current knowledge about the susceptibility of specific retinal ganglion cell (RGC) types in experimental glaucoma, and to delineate the initial morphological and functional alterations that occur in response to intraocular pressure (IOP) elevation. There has been debate in the field as to whether RGCs with large somata and axons are more vulnerable, with definitive conclusions still in progress because of the wide diversity of RGC types. Indeed, it is now estimated that there are greater than 30 different RGC types, and while we do not yet understand the complete details, we discuss a growing body of work that supports the selective vulnerability hypothesis of specific RGC types in experimental glaucoma. Specifically, structural and functional degeneration of various RGC types have been examined across different rodent models of experimental glaucoma (acute vs. chronic) and different strains, and an emerging consensus is that OFF RGCs appear to be more vulnerable to IOP elevation compared to ON RGCs. Understanding the mechanisms by which this selective vulnerability manifests across different RGC types should lead to novel and improved strategies for neuroprotection and neuroregeneration in glaucoma.
Related Topics
Life Sciences Immunology and Microbiology Immunology and Microbiology (General)
Authors
, ,