Article ID Journal Published Year Pages File Type
5771564 Finite Fields and Their Applications 2017 18 Pages PDF
Abstract
A formula for the number of monic irreducible self-reciprocal polynomials, of a given degree over a finite field, was given by Carlitz in 1967. In 2011 Ahmadi showed that Carlitz's formula extends, essentially without change, to a count of irreducible polynomials arising through an arbitrary quadratic transformation. In the present paper we provide an explanation for this extension, and a simpler proof of Ahmadi's result, by a reduction to the known special case of self-reciprocal polynomials and a minor variation. We also prove further results on polynomials arising through a quadratic transformation, and through some special transformations of higher degree.
Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
, ,