Article ID Journal Published Year Pages File Type
5771888 Journal of Algebra 2017 24 Pages PDF
Abstract
The real rank two locus of an algebraic variety is the closure of the union of all secant lines spanned by real points. We seek a semi-algebraic description of this set. Its algebraic boundary consists of the tangential variety and the edge variety. Our study of Segre and Veronese varieties yields a characterization of tensors of real rank two.
Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
, ,