Article ID Journal Published Year Pages File Type
5771971 Journal of Algebra 2017 17 Pages PDF
Abstract
Viewing a bivariate polynomial f∈R[x,t] as a family of univariate polynomials in t parametrized by real numbers x, we call f real rooted if this family consists of monic polynomials with only real roots. If f is the characteristic polynomial of a symmetric matrix with entries in R[x], it is obviously real rooted. In this article the converse is established, namely that every real rooted bivariate polynomial is the characteristic polynomial of a symmetric matrix over the univariate real polynomial ring. As a byproduct we present a purely algebraic proof of the Helton-Vinnikov Theorem which solved the 60 year old Lax conjecture on the existence of definite determinantal representation of ternary hyperbolic forms.
Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
,