Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5772506 | Journal of Number Theory | 2017 | 9 Pages |
Abstract
In this paper we mainly prove the following two conjectures of Z.-W. Sun [10]: For any odd prime p, we haveâk=0pâ1Pk8kâ¡1+2(â1)(pâ1)/2p2Epâ3(modp3),âk=0pâ1Pk16kâ¡(â1)(pâ1)/2âp2Epâ3(modp3), where Pn=âk=0n(2kk)2(2(nâk)nâk)2(nk) is the n-th Catalan-Larcombe-French number, En are the Euler numbers which are defined byE0=1,En=ââk=1ân/2â(n2k)Enâ2k(nâ¥1).
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory
Authors
Guo-Shuai Mao,