Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5772525 | Journal of Number Theory | 2017 | 6 Pages |
Abstract
The q-Narayana numbers Nq(n,k) and q-Catalan numbers Cn(q) are respectively defined byNq(n,k)=1âq1âqn[nk][nkâ1]andCn(q)=1âq1âqn+1[2nn], where [nk]=âi=1k1âqnâi+11âqi. We prove that, for any positive integers n and r, there holdsâk=ânn(â1)kqjk2+(k2)Nq(2n+1,n+k+1)râ¡0(modCn(q)), where 0⩽j⩽2râ1. We also propose several related conjectures.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory
Authors
Victor J.W. Guo, Qiang-Qiang Jiang,