Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5772710 | Journal of Number Theory | 2017 | 12 Pages |
Abstract
In this paper, we establish a Rodriguez-Villegas type congruence for truncated q-hypergeometric functions. Using this result, we can confirm several conjectures of Guo and Zeng, such asâk=0pâ1(q;q3)k(q2;q3)k(q3;q3)k2â¡(â3p)q1âp23(mod(1+q+â¯+qpâ1)2), where p⩾5 is a prime, (a;q)n=(1âa)(1âaq)â¯(1âaqnâ1), and (â
p) denotes the Legendre symbol modulo p.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory
Authors
Victor J.W. Guo, Hao Pan, Yong Zhang,