Article ID Journal Published Year Pages File Type
5773263 Linear Algebra and its Applications 2017 7 Pages PDF
Abstract
For a real (n×n)-matrix A the sign-real and the sign-complex spectral radius - invented by Rump - are respectively defined asρR(A):=max⁡{|λ|||Ax|=|λx|,λ∈R,x∈Rn\{0}},ρC(A):=max⁡{|λ|||Ax|=|λx|,λ∈C,x∈Cn\{0}}. For n≥2 we prove ρR(A)≥ζnρC(A) where the constant ζn:=1−cos⁡(π/n)1+cos⁡(π/n) is best possible.
Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
,