Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5773263 | Linear Algebra and its Applications | 2017 | 7 Pages |
Abstract
For a real (nÃn)-matrix A the sign-real and the sign-complex spectral radius - invented by Rump - are respectively defined asÏR(A):=maxâ¡{|λ|||Ax|=|λx|,λâR,xâRn\{0}},ÏC(A):=maxâ¡{|λ|||Ax|=|λx|,λâC,xâCn\{0}}. For nâ¥2 we prove ÏR(A)â¥Î¶nÏC(A) where the constant ζn:=1âcosâ¡(Ï/n)1+cosâ¡(Ï/n) is best possible.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory
Authors
Florian Bünger,